目的
ウェイトリフティング選手の記録向上の為、試技時のバーベル速度、関節角度及び関節角速度の関係について検討し、選手動作展開を明らかにすること。

方法
被験者：千葉県ウェイトリフティング出場選手男子77kg階級の2名であった。

試技分析：試技はデジタルカメラ（EX-F1、CASIO社製）にて試技者の左横から30fpsで撮影したものを使用。各選手スナッチのベスト記録を分析対象試技とした。得られたVTR画像から動作解析ソフト（Frame DiaisIV DKH社製）によりバーベル軌跡、頭頂、耳珠点、胸骨上縁、肘、手（バーベルと同じ）、大転子、膝、足首、踵、つま先の11点をデジタイジングした。4点実験値出算によって位置データを算出した。得られた位置データは残差分析を行い最適選択周波数を決定し、LowPassフィルター（4次のパターーラース型）で平滑化した。

バーベル離地後の後ろ方向の変位（Dx1m）、前方向への変位（Dx3m）、最大挙上高（Dy1m）、バーベル離地後からキャッチ（Dy2m）最大挙上高からキャッチ（Dy3m）とした。バーベル位置データを時間微分（Δt＝1/30sec）し、バーベル水平速度（m/s）、鉛直速度（m/s）、合成速度（m/s）を算出した。

大転子を基準にして反時計方向をプラスとして膝角度、胸骨上縁を基準にして時計方向をプラスとして膝関節角度、膝を基準にして時計方向をプラスとして外果角とした。

バーベル位置データと同じく時間微分をし、膝関節角度、膝角速度、外果角速度を算出した。

本論においては、バーベルの離地から膝関節における1回目の最大伸展位までをファーストブ、膝関節における最大屈曲位から2回目の最大伸展位までをセカンドブ、膝関節における最大伸展位からバーベルの最大挙上高までをターンオーバーとした。

結果および考察
最終成績はK選手118kg、S選手113kgであった。

バーベル軌跡で比較すると、ファーストブ、においてK選手は鉛直に対し、やや後方に変位していた。S選手はほぼ鉛直に変位していた。バーベル水平速度、鉛直速度において、速度の上がり方に違いがみられた。

ファーストブにおける膝関節角度、膝関節角速度の違いは試技にかかる時間に関係していると考えられる。K選手はファーストブにおいて、膝関節角度が大きく、速く伸展し、セカンドブでは、素早く浅く屈曲し、一気に膝関節角度を伸展させ最大高まで上昇した。これは、膝を素早く伸展、屈曲させることで、より大きな力を得ようとしていることがわかる。これによりスピードのあるパフォーマンスが得られ、試技でバーベルを加速する時間を短縮させていると考えられる。

結論
スナッチにおいては、ファーストブからセカンドブまでの大動作を、膝関節角度をより大きく、早く行い、バーベル変位を後ろ方向に変位させる。キャッチにおいては最大挙上高により近い位置でキャッチを行う。それにより高いパフォーマンスを発揮することができ、より良い競技成績に繋がるという結論に達した。
陸上競技中距離種目のピッチ・ストライドと疾走動作の関係

指導教官 船渡 和男 教授

目的
陸上競技中距離種目は駆け引きが重要な要素を占める。レース中のペース変化に対応するために、パフォーマンスを増大させる方法を明らかにすることを目的とした。

方法
被検者は東京都高校新人戦800mと1500mに出場し、I.H.決勝選出しを含む好成績を収めた男子3名であった。各対象者のホームストレート中央6m区間通過時を右側方からハイスピードカメラ (120fps) で撮影した。実測標を求めるために、疾走動作をリンクセグメントモデル阿江 (1990) を用いてデジタイズし、平滑化して実長換算した。映像内の連続する2歩の疾走動作を分析した。分析項目はスイング動作中に軸を臀部に近づける引き付け速度、ドライブ動作中の最大大腿伸展速度、大転子と足首を結んだ線であるわざわざ最大大腿伸展速度と接地直前の脚振り戻り速度である。（図1）

結果および考察
現場では、引き付け動作を行うとピッチが落ちるという指導がなされることがある。しかし本研究では、引き付け動作速度はピッチ（以下SP）・ストライド（以下SL）とに一定の相関があり（図2）、下関は大腿に振られるかたちで動いていた（図3）。
引き付け速度とSP・SLに相関があった理由は、速度決定の主要因である大腿動作の影響で動いているものであるからと推察できる。引き付け速度が大腿動作に起因していることを考えると、意識的に下肢の動きを止めて引き付け動作を行わないようにした場合、大腿伸展筋群を無理に使用することになる。
本研究では、接地時間の短縮に伴いSLが大きくなる結果となった（図4）。スプリント走では接地時間を大きくし力値を増やして、SLを大きくする。しかし、対象が中距離で、疾走速度が低いことと、中距離では高レベルの努力度を維持し続け疾走するが、最大努力度まで余力のある状態で脚伸展を行っていることが考えると、脚伸展速度を増大させるで、短期接地時間でできる大きな力値を稼ぐことが可能であると推察できる。このようなことはスプリント走よりも低い速度の疾走であれば、脚伸展速度を上げることによりSP・SLを増大させる速度増加が可能であると推察できる。また、疾走速度と脚の振り戻し速度との関連性がみられなかった。高い振り戻し速度は、高い脚伸展速度につながるため良いとされている。しかし、振り戻し速度が疾走に関係ないことを考えると、中距離以下の疾走速度では振り戻し動作はあまり重要でなく接地間隔中に伸展力を生み出すだけで十分な推進力を得ていることが示唆される。言い換えれば、振り戻し速度を増加させることで疾走速度を高められる余地があるということである。疾走速度を上げたいときに振り戻し速度を上げることは有効な手段であると推察できる。

結論
1) 引き付け動作は、大腿の動作によって引き起こされるもので、SP・SLの両者を増大する速度増加を望むことができる。そして、脚伸展速度を増大するために、改善余地が大きいにある振り戻し動作を意識して、速くすることが速度を瞬時に増大させるのに有効である。
3) 以上のことを中距離走のパフォーマンスを増大させるために、スイング動作を意識することなく脚伸展を速くすることと提言する。
カヌースラロームにおけるレースタイムに影響を及ぼす要因に関する研究

指導教官 船渡 和男 教授

07A0539 二瓶 功次

目的

カヌースラロームの自然の川の流れの中で艇を操らなくてはならないという競技種目なのに異味を持ち、カヌースラロームにおける競技力とはどのような能力を指すのか、さらにはカヌースラロームにおける競技力の合理化に向上させていくにはどのような能力に焦点をあててトレーニングに繋げて行うのがより効率が良いのかということに疑問を持った。今回はカヌースラローム選手のレース映像から、タイム、バドル数の関係を比較・検討し、レース中のどの段階で選手間にタイムの差が出てくるのかを明らかにすることを目的とした。

方法

被験者：2010年10月10・11日に青梅市多摩川御岳渓谷特設カヌースラロームコースにて行われた「平成22年度日本カヌースラローム選手権大会」に出場したシニア選手2名（大学生）とジュニア選手3名（高校生）であった。

映像分析：対象レースは、2010年10月10・11日に開催された「平成22年度日本カヌースラローム選手権大会」とし、この大会における上位3選手（シニア選手）とジュニア選手3名を分析対象とした。対象レースをビデオカメラ（30fps）で撮影した。タイムは、レース内で分析を行う区間に指定し、分析区間内でのフレームから旗門間タイムとその平均タイムを算出した。バドル数も同分析区間で、片方のバドルが着水した後、次に左右どちらかのバドルが着水したところを1バドルと数えて、旗門間バドル数とその平均バドル数を算出した。分析区間の決定はレースタイムと分析区間内のタイムを比較し、分析区間において選手間に差が出ていることを確認して行った。

結果および考察

レース分析：被験者のレースタイムと分析区間内タイムは表1の通りであった。

表1.日本選手権のレースタイムと分析区間内タイム

<table>
<thead>
<tr>
<th>区間</th>
<th>TV</th>
<th>TW</th>
<th>MT</th>
<th>ST</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>レースタイム</td>
<td>35.47</td>
<td>39.51</td>
<td>156.74</td>
<td>178.51</td>
<td>126.43</td>
</tr>
<tr>
<td>分析区間内タイム</td>
<td>30.35</td>
<td>35.41</td>
<td>152.84</td>
<td>174.71</td>
<td>120.81</td>
</tr>
</tbody>
</table>

表2は、被験者6名のレースタイムと分析区間内タイム、分析区間内のバドル数を比較したものです。レースタイムと分析区間内タイムが速い選手ほど、分析区間内のバドル数が少なく、1バドルでより長い距離を進むことができた。1バドルでより長い距離を進むことができたのはレースタイムの速い選手ほど1バドルにより大きなパワーの発揮が見られるからだと思われる。

図1は、5選手の旗門間のタイムを旗門の位置ごとに示したものです。ターンの段階で最も選手間にタイムの差が出ている。

表2.分析区間内におけるタイムとバドル数の比較

<table>
<thead>
<tr>
<th>区間</th>
<th>TV</th>
<th>TW</th>
<th>MT</th>
<th>ST</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>レースタイム</td>
<td>35.47</td>
<td>39.51</td>
<td>156.74</td>
<td>178.51</td>
<td>126.43</td>
</tr>
<tr>
<td>分析区間内タイム</td>
<td>30.35</td>
<td>35.41</td>
<td>152.84</td>
<td>174.71</td>
<td>120.81</td>
</tr>
</tbody>
</table>

図3は、5選手の日本選手権出場順位と5選手の平均タイム、テーブル平均バドル数を比較したものである。日本選手権出場順位が高いほど選手の平均タイムが短くテーブル平均バドル数は少なかった。

表3.分析区間内における平均タイムと平均バドル数の比較

<table>
<thead>
<tr>
<th>区間</th>
<th>TV</th>
<th>TW</th>
<th>MT</th>
<th>ST</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>レースタイム</td>
<td>35.47</td>
<td>39.51</td>
<td>156.74</td>
<td>178.51</td>
<td>126.43</td>
</tr>
<tr>
<td>分析区間内タイム</td>
<td>30.35</td>
<td>35.41</td>
<td>152.84</td>
<td>174.71</td>
<td>120.81</td>
</tr>
</tbody>
</table>

レースタイムと分析区間内タイムが速い選手ほど、分析区間内のバドル数が少なく、1バドルでより長い距離を進むことができた。ターンの段階でも1バドルでより長い距離を進むことができて良い選手が良い成績を残していた。

結論

・日本選手権出場順位、レースタイム、分析区間内タイムと分析区間内バドル数を比較したところ、反比例の関係にあった。
・ターンの段階において選手間にタイム差が出ており、日本選手権出場順位が高くターンタイムの短い選手ほど、ターン平均バドル数が少なく、これらのことから、カヌースラロームのレースタイムに影響を及ぼす要因には、ターンに要するタイムとパドル数が大きく関係していることが分かった。またこれらは成績の良い選手ほど1バドルでより長い距離を進むことができるパワーを持っているようであった。ジュニア選手は特にこのパドルによる引き運動において1バドルでより長い距離を進むことができパワーを養成することが日本選手権の上位を目指す上で重要だと示唆される。
男子競馬におけるドラッグレスク（前締めと前方かかえ込み2回転）における世界と日本のトップ選手の比較

指導教官
船渡 和男 教授

07A0363

伊藤 雄一郎

I. 目的
競馬において離手後の滞空時間は重要であり、滞空時間が長ければより高い達成が可能である。それでは、滞空時間を得るためには離手時の鉛直速度が重要となる。

II. 方法
被験者：2010年7月3日（土曜日）東京競馬場で行われた2回転JAPAN CUP 2010の馬体が選手権1900mに出場した世界トップクラスの選手であるMD選手のドラッグレスクの離手を対象とした。また、同様に世界トップクラスの日本選手のTN選手に同じドラッグレスクの離手を行ってもらい比較対照とした。

映像撮影：ハイスピードカメラを用いて、撮影速度500fps、シャッタースピード1/1000秒に設定して映像撮影を行った。

画像解析：画像解析ソフトを使用し、リンクセグメントモデルには全身23点、15セグメントモデル（戸江,1996）を使用した。座標位置データには、残差分析（Winter,1990）によって遮断周波数を決定し、10Hzの特性を用いた4次のパラメータを用いて平滑化を行った。データの分析期間は、起騎者がロイター板接地から競馬離手までの距離を分析対象とし、ロイター板接地をBoard TD、ロイター板接地をBoard TO、競馬離手をHorse TD、競馬離手をHorse TO と4つの局面に分け、Board TD からBoard TO をOn-Board Phase、Board TO からHorse TO をPre-Flight Phase、Horse TD からHorse TO をOn-Horse Phase と3つの区間に分けた。

III. 結果及び考察
図1、図2、図3にそれぞれ両者の合成速度、水平速度、鉛直速度の変化を示した。
水平速度（図2）ではHorse TDでMD選手4.80m/s、TN選手4.95m/sとTN選手の方が大きい値を示したものに対し、Horse TOでMD選手3.20m/s、TN選手TO 2.67m/sとTN選手の方がOn-Horse Phaseでの減少が大きい。また鉛直速度の増加はMD選手Horse TD:3.57m/s→Horse TO:3.62m/s、TN選手Horse TD:3.04m/s→Horse TO:3.51m/sとTN選手のほうが大きいことから、MD選手に比べTN選手の方がOn-Horse Phaseにおいて、より多くの水平速度を鉛直速度に変換していると示された。しかし、合成速度（図1）ではMD選手Horse TD:5.98m/s→Horse TO:4.83m/s、TN選手Horse TD:5.81m/s→Horse TO:4.41m/sとTN選手の方がOn-Horse Phaseで速度の減少が大きいことがわかった。

鉛直速度（図3）はBoard TOでMD選手4.60m/s、TN選手3.95m/sとMD選手の方がOn-Board Phaseでより大きな鉛直速度を獲得している。これにより全体を通してMD選手の方がCOMの合成速度も大きくなっている。特にOn-Horse Phaseにおいて変換する水平速度が少なくて鉛直速度を維持することが可能となるため、Horse TOでの水平速度と合成速度の減少が小さくなる。

IV. 結論
ドラッグレスクにおいて競馬離手後の滞空時間をより長く確保するためには、On-Board Phaseでの大きな鉛直速度の得る必要があると考えられる。また、On-Board Phaseでの大きな鉛直速度を獲得することによりOn-Horse Phaseで鉛直速度の維持に使われる水平速度を抑えることができ、Horse TOでCOMの合成速度の減少を抑えることができると考えられる。
目的
下肢および多関節動作で発揮される筋力の左右差と躍躍パフォーマンスとの関係を検討し明らかにすることで、今後の左右差の必要性を明らかにすることを目的とした。

方法
被験者：サッカー部に所属する一般高校生 64 名であった。年齢は 16.5±0.8歳、身長は 170.9±6.2 cm、体重は 59.0±7.3 kgであった。対象者は半関節筋力を測定するのに等速性筋力測定器（Cybex 社製）、多関節筋力発揮を測定するには油圧式等速性レッグプレスマシン（LEGPPOWER, 竹井機器）を使用し、垂直跳び動作の多関節動作の測定には床反力計（キスラー社）を使用した。CYBEXの設定は、60deg/secで左右の屈曲・伸展の動作を全て行いピークトルクを算出した。また、Legressにおいては 0.2m/s・1.0m/sの速度設定で足伸展動作を両脚・左脚・右脚全力で 2 試技行いそこから両脚・左脚・右脚のパワーレベルを算出した。垂直跳びの試技では、手を腰に置いた状態でカウンターステップジャンプ（CMJ）とスクワットジャンプ（SQJ）をフォースプロファイルにて全力で 2 試技の躍躍高と力量（N/BW*sec）を算出した。垂直跳びの試技では、CMJ、SQJともに全力の力で筋力を行い SQJにおいては腰に手を当てた状態から筋力を行ってもらった。

本研究は、各測定項目の左右差の評価として先行研究 1)で行われている左右対称指数の計算式を用いて行なった。

SI index＝[(左脚の値－右脚の値) / 右脚の値] ×100の計算式で算出。プラスの値が出れば左脚が強く右脚が強ければマイナスの値を示す。これらの計算式を用いて半関節動作・多関節動作の左右差の関係及び躍躍高パフォーマンスとの左右差の関係性をそれぞれの測定変数と相関関係を算出した。

結果および考察
図 1 は左右一側試技による半関節トルク(Nm)・多関節パワ－(P)を比較した場合、0.2m/s、1.0m/sいずれの筋力発揮においても有意な相関関係を示した。したがって、半関節筋力発揮において優れている者は多関節筋力発揮においても強い筋力発揮を行うことができると示唆された。しかし、単(Nm)・多(P)のSI indexによって示された関係においては 0.2m/s、1.0m/sともに有意な関係性はみられなかった。これららの結果から股・膝・足関節筋力が異なっていなくとも、各筋で発揮された力が半関節までうまく連鎖されているかという観点から考察される。一方、図 2 跳躍高と跳躍時の左右の力の関係から両足による力発揮の左右差の存在を明らかにすることはできたが、左右差の安定した筋力発揮が必ずしも跳躍高的高さに影響されないということが示唆された。

結論
半関節の左右差があるからといって多関節の左右差があるとは言えないことが示された。よって、半関節の部分的なトレーニングと共に多関節運動の協調が必要と考えられる。
また、跳躍時の左右差を各側性筋力発揮の安定性が跳躍高に影響すると考えられる。
形態・身体組成からみる競泳の特色

指導教官 船渡 和男 教授

目的

私は競泳というスポーツに現場で関わってきた時間が長く、主観的でしか捉えていなかった。今回、他の競技と比較することにより競泳というスポーツを客観的に捉え、今後私が関わるであろう競泳選手へ生かしていく。

方法

被験者①：18〜22歳の一般人及びアスリート（男子 195名、女子 145名）

被験者②：15〜33歳の競泳選手（男子 33名、女子 42名）

形態測定：BLS を用いて行った。測定した部位は以下の 18 部位。上肢長・上腕長・前腕長・下肢長・大腿長・大腿幅・肩峰幅・肩峰長・大転子間幅・頸圍・胸圍・腰圍/腹圍・腹圍・上腕围・前腕圍・大腿圍・下腿围。また、得られた形態計測値から 7 部位の比率を算出した。指幅/身長比、肩峰幅・大転子間幅・胸圍/胸圍比、腰圍/腰圍比、腰圍/腹圍比、前腕/上腕比、下肢/大腿比。

身体組成測定：BodPod を使用した。対象者①は各競技ごとに、対象者②は各種目ごとに平均、標準偏差、最大値、最小値を算出した。

BLS や BodPod によって得られた項目についてそれぞれの平均値の検定を行った。また、多重比較（Tukey-Kramer HSD 検定）を行って各種競技又は各種目ごとに検定を行った。

結果および考察

競泳は他の競技に比べ、男女共に%fat が高い。そして女子に至っては LBW の値も他の競技と比べ高い数値を示している（表 1）、つまり、除糖量が多いと言える。

%fat における統計的有意差が示された。

競泳選手男女合わせて、統計的有意差が認められたのは女子の背中と肩甲部の背中厚さの背中厚さの差で、上肢長と指幅長の差もあった（表 2）。男子では種目ごとの体格の差が見られなかったため、どの種目においても体格はほぼ同様であることが示された。

結論

競泳は他の競技と比べ、脂肪量も除糖量も多いが身体が大きい。特にその差が顕著に現れるのは推進力を生み出す上半身であることが示された。

また、競技別では男子の競泳選手は推進力を得る為の要素として筋力が重要な部分を担っている。その為、種目別において体型はほぼ同様である。一方女子の選手では技術が重要な役割を果たしておりその結果、泳ぐ際に身体の使い方が大きく異なるバタフライと背泳の選手の間に体型の差が生じたと言える。
目的

体脂肪率の測定に際して、Brozekの推定値が用いられている。その推定値と、その他の推定値と、すわに9つの推定値の数値を算出し、Brozekの推定値が全ての推定値のAverageと近い数値を表わしているかを調べた。算出された数値の結果から、Brozekの推定値の使い方が体脂肪率を推定するのに適しているかをみたことにした。

方法

被験者：体育専攻学生、男性670人、女性311人、

身体組成の計測には、空気圧計法（Air Displacement Plethysmography）を用いて行った。空気圧計法には、Body Composition system Mab1000、Life Measurement Lnc製、以下のBody Podを使用した。このBody Podは、身体密度を用いて体脂肪率を算出する装置だが、身体密度は空気圧計法によって計測された体圧から算出した。被検者は、被検者全、全体重の測定後に、肺活量計の測定を行った。肺活量計の測定は、5回行い、最大値と最小値を除いた3回の平均値を測定値とした。算出された体重、全体重、肺活量から身体密度を算出した。得られた身体密度値から、男女17歳以下、18歳以上に対応した体脂肪率推定値を用いて体脂肪率を算出した。BMIを用いて区分し算出した体脂肪率、肺活量計の測定値の違いを表した。尚、BMIに関しては、WHOが定義している数値を使用した。

結果

表①男性、Lohmanの式で算出されたデータは低い値を示し、日本人の平均値を算出していると言われているBrozekの式の値はすべてこの式のはじめに位置している。また、Asian Japaneseの推定値もBrozekの推定値の値とほぼ一致である。

表②女性、BMIを用いたBrozekの推定値に対しAsian Japaneseの推定値の値が約5パーセント高く算出された。一方、Brozekの推定値に対する全スポーツ・カーソニアンの方式はほぼ同じ数値を示し、全体の平均値に近い値で算出した。

考察

本研究では、体脂肪率を測定するために用いるための測定値の違いがどのように現れるかを目行った。測定対象者は、ジュニア期に当たるスポーツを行っている選手、体育専攻学生が中心であった。体脂肪率はBMIから用いた数値である。男性は体脂肪率を算出するに際し、Brozekの先行研究に対して他の7つの式を用いても差がみられないことがわかった。ALL sportの推定値は、体脂肪率が低く算出されているためスポーツ選手は体脂肪率が少ないことがわかる。一方、女性はAsian Japaneseの推定値の値が約4パーセント高く数値が出た。Brozekの値は他の推定値の値の平均値に近い値で算出した。したがって、アジア人女性の体脂肪率を測定するにはBrozekの推定値を用いることが一番良いと考えられる。

結論

Brozekの推定値の妥当性を検証した結果、男性はBMIにおける体脂肪の数値がほかの数値と同じになった。一方、女性の数値はアジア人の数値とBrozekの推定値で差が出た。しかし、AverageをみるとBrozekの推定値の数値とほぼ同じである。したがって、男女ともBrozekの推定値を用いることが妥当であるという事が考えられる。
目的
本研究ではソフトボールのバッティング動作において競技力向上のため大学生と高校生のバッティングスピードとパレット軌跡に着目し、それぞれを比較することで具体的にどのような違いが出るのかを明らかにすることを目的とした。

方法
被験者：高校ソフトボール部に所属する男子生徒9名と大学ソフトボール部に所属する男子学生4名を被験者として実験に使用した。被験者は全て右打者であった。

実験方法：実験設定をテー台に合わせて試合時の設定を保存し、撮影機は、ストライクゾーンの真ん中にある高さに任意で調整された（高さ：60～80cm）。ティー台の上に地点にデジタルビデオカメラ（SONY製）を設置した。撮影は、スイング開始からスイング終了までの6秒間とし、撮影速度は120fps、シャッタースピードは1/1000秒で行った。試験に使用するパラメータは全ての被験者で統一した。

測定方法：実験は、テー台に置かれたボールをバッティングすることができる。ティーテーダは実験を2回、素振りを2回ずつ行った。被験者には、センター方向に強いラインナーやの打球を打つように指示した。試験終了後、被験者には、試技の成否を確認し、納得のいく場合は、もう一度試技を行った。

結果および考察
高校生群と大学生群の実打でのバッティング速度の最大値は、高校生群が34.9m/sで大学生群が36.7m/sであった。また、素振りでのバッティング速度の最大値は、高校生群が34.1m/sで大学生群が36.8m/sであった。

実打でのインパクト時の速度は、高校生群が33.2m/sで大学生群が36.4m/sであった。また、両群での素振りでのインパクト時の速度は高校生群が33.2m/sで大学生群が33.4m/sであった。これらの結果から、大学生群の方が高校生群に比べ速度が遅い傾向はあったが、有意差検定の結果、有意な差はみられなかった。本研究結果は先行研究と比較して異なっていた。先行研究ではどれも未熟練者に比べ、熟練者の方がバッティング速度は低い値を示していた。しかし、大学生群の方がレベルの高いパフォーマンスをしていたことからスイング速度だけでソフトボールのバッティングパフォーマンスを必ずしも評価できるというわけではないのかもしれない。

表1。実打・素振りのバッティング速度

<table>
<thead>
<tr>
<th></th>
<th>実打</th>
<th>素振り</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハウス1</td>
<td>33.2</td>
<td>34.9</td>
</tr>
<tr>
<td>ハウス2</td>
<td>33.2</td>
<td>34.9</td>
</tr>
<tr>
<td>ハウス3</td>
<td>33.2</td>
<td>34.9</td>
</tr>
</tbody>
</table>

図1は両群の実打と素振りのパレットボール軌跡を記したものである。これをみると素振りでは両群を比較しても大きな違いはみられないが実打では高校生群に比べ大学生群の方が最初に体の動く動きが体を大きくスイングをしている。高校生群のようにスイングの emperorからバットを大きく回転させてしまうとスイング時間が長くなってしまい投手の投げたボールに対応するのは難しい。一度身体を離したバットを再度身に近づけ、前にバットを振り抜かせるようなスイングの方がバット速度を効果的に大きくし、投球に対する判断を正確にし、大きくボールを飛ばすことができる。

図1。実打と素振りにおける高校生群と大学生群のパレットボールとパレット軌跡の比較（ボールは0の位置）

結論
今回の実験では両群のスイング速度に大きな違いはみられなかった。
また、実打時のパレットボール軌跡に大きな違いがみられたことからパレットボール軌跡からパフォーマンスを評価でき、パッティング技術の向上に繋がるのではないかと考えられた。